|
@@ -66,12 +66,25 @@ history = model.fit(train_generator, batch_size=32,
|
|
|
epochs=30, validation_data=valid_generator)
|
|
|
|
|
|
|
|
|
-img = preprocessing.image.load_img("data/seg_test/buildings/20057.jpg")
|
|
|
-img_arr = preprocessing.image.img_to_array(img)
|
|
|
-img_arr = tf.expand_dims(img_arr, 0)
|
|
|
-true_labels = valid_generator.classeds
|
|
|
-predictions = model.predict(img_arr)
|
|
|
-
|
|
|
-
|
|
|
-y_pred = np.array([np.argmax(x) for x in predictions])
|
|
|
-print(y_pred)
|
|
|
+t_generator = train_datagen.flow_from_directory(
|
|
|
+ "../input/intel-image-classification/seg_test/seg_test", subset="validation", shuffle=False, **dataflow_kwargs)
|
|
|
+q = 0
|
|
|
+right = 0.0
|
|
|
+total = 0.0
|
|
|
+
|
|
|
+for q in t_generator:
|
|
|
+ x,y=q
|
|
|
+
|
|
|
+ z = model.predict(x, verbose=False)
|
|
|
+
|
|
|
+ for i in z:
|
|
|
+ total +=1.0
|
|
|
+ if np.argmax(y) == np.argmax(i):
|
|
|
+ right+=1.0
|
|
|
+ if (total % 100) == 0:
|
|
|
+ correct = (right/total) * 100
|
|
|
+ print(f"{correct}%")
|
|
|
+ if total == 598:
|
|
|
+ breaK
|
|
|
+correct = (right/total) * 100
|
|
|
+print(f"Final validation: {correct}%")
|