123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- #!/usr/bin/env python
- # coding: utf-8
- # In[29]:
- import itertools
- import os
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
- import matplotlib.pylab as plt
- import numpy as np
- import tensorflow as tf
- import tensorflow_hub as hub
- from tensorflow.keras import datasets, layers, models, preprocessing
- print("TF version:", tf.__version__)
- print("Hub version:", hub.__version__)
- print("GPU is", "available" if tf.test.is_gpu_available() else "NOT AVAILABLE")
- IMAGE_SIZE=(224, 224)
- BATCH_SIZE=32
- datagen_kwargs = dict(rescale=1./255, validation_split=.20)
- dataflow_kwargs = dict(target_size=IMAGE_SIZE, batch_size=BATCH_SIZE,
- interpolation="bilinear")
- train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
- **datagen_kwargs)
- train_generator = train_datagen.flow_from_directory(
- "data/seg_train/seg_train", subset="training", shuffle=True, **dataflow_kwargs)
- print(f"Data shape {train_generator[1][0].shape}")
- valid_generator = train_datagen.flow_from_directory(
- "data/seg_train/seg_train", subset="validation", shuffle=False, **dataflow_kwargs)
- model = tf.keras.models.Sequential()
- model.add(layers.Conv2D(32, (3, 3), activation='relu'))
- model.add(layers.MaxPooling2D((2, 2)))
- model.add(layers.Conv2D(64, (3, 3), activation='relu'))
- model.add(layers.MaxPooling2D((2, 2)))
- model.add(layers.Conv2D(128, (3, 3), activation='relu'))
- model.add(layers.MaxPooling2D((2, 2)))
- model.add(layers.Flatten())
- model.add(layers.Dense(64, activation='relu'))
- model.add(layers.Dense(train_generator.num_classes, activation='softmax'))
- model.build(input_shape=(32, 224, 224, 3))
- print(f"Model summary: {model.summary()}")
- optmizer = tf.keras.optimizers.Adam(learning_rate=0.001)
- model.compile(optimizer=optmizer, loss=tf.keras.losses.MeanSquaredError(),
- metrics=['accuracy'])
- history = model.fit(train_generator, batch_size=32,
- epochs=30, validation_data=valid_generator)
-
- t_generator = train_datagen.flow_from_directory(
- "../input/intel-image-classification/seg_test/seg_test", subset="validation", shuffle=False, **dataflow_kwargs)
- q = 0
- right = 0.0
- total = 0.0
- for q in t_generator:
- x,y=q
- z = model.predict(x, verbose=False)
-
- for i in z:
- total +=1.0
- if np.argmax(y) == np.argmax(i):
- right+=1.0
- if (total % 100) == 0:
- correct = (right/total) * 100
- print(f"{correct}%")
- if total == 598:
- break
- correct = (right/total) * 100
- print(f"Final validation: {correct}%")
|