12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import pandas as pd
- import numpy
- import tensorflow as tf
- from tensorflow.keras import datasets, layers, models
- import math
- import time
- # Read train data from csv
- df = pd.read_csv('train.csv')
- # Shuffle data after read
- df = df.sample(frac=1)
- # Drop and separate label from the data
- df_label = df['label']
- del df['label']
- # Convert both dataframes to numpy objects
- X = df.to_numpy()
- y = df_label.to_numpy()
- # Reshape and resize data (80% train data, 20% validation data)
- X = X.reshape((-1, 28, 28, 1))
- X_train_size = math.floor(len(X)*.8)
- X_test_size = len(X) - X_train_size
- X_train = X[:X_train_size]
- X_test = X[X_test_size+1:]
- y_train = y[:X_train_size]
- y_test = y[X_test_size+1:]
- # One Hot Encode the Label
- y_train = numpy.eye(10)[y_train]
- y_test = numpy.eye(10)[y_test]
- # Normalize the Input between 0 and 1
- X_train = X_train/255
- X_test = X_test/255
- # Create the convolutional neural network model
- model = models.Sequential()
- model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
- model.add(layers.MaxPooling2D((2, 2)))
- model.add(layers.Conv2D(64, (3, 3), activation='relu'))
- model.add(layers.MaxPooling2D((2, 2)))
- model.add(layers.Conv2D(128, (3, 3), activation='relu'))
- model.add(layers.Flatten())
- model.add(layers.Dense(64, activation='relu'))
- model.add(layers.Dense(10, activation='softmax'))
- # Define adam as the optmizer and MSE as the loss function
- optmizer = tf.keras.optimizers.Adam(learning_rate=0.001)
- model.compile(optimizer=optmizer, loss=tf.keras.losses.MeanSquaredError(),
- metrics=['accuracy'])
- # Train the model
- history = model.fit(X_train, y_train, batch_size=2**12,
- epochs=30, validation_data=(X_test, y_test))
- # Load test dataset as pandas dataframe and convert to numpy
- df = pd.read_csv('test.csv')
- X = df.to_numpy()
- # Reshape the data for the expected format of the model and predict the output
- y = model.predict(X.reshape(-1, 28, 28, 1))
- # For each input, save to file the predicted output
- with open('submission.csv', 'w') as f:
- f.write("ImageId,Label\n")
- idx = 1
- for i in y:
- f.write(f"{idx},{numpy.argmax(i)}\n")
- idx += 1
|