123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- #include "kompute/Core.hpp"
- #include <string>
- #include <vector>
- #include <memory>
- #include <iostream>
- #include <kompute/Kompute.hpp>
- #include <spdlog/spdlog.h>
- static std::vector<uint32_t> compileSource(const std::string& source) {
- std::ofstream file_out("tmp_kp_shader.comp");
- file_out << source;
- file_out.close();
- system(std::string("glslangValidator -V tmp_kp_shader.comp -o tmp_kp_shader.comp.spv").c_str());
- std::ifstream fileStream("tmp_kp_shader.comp.spv", std::ios::binary);
- std::vector<char> buffer;
- buffer.insert(buffer.begin(), std::istreambuf_iterator<char>(fileStream), {});
- return {(uint32_t*)buffer.data(), (uint32_t*)(buffer.data() + buffer.size())};
- }
- void kompute(const std::string& shader) {
- // 1. Create Kompute Manager with default settings (device 0, first queue and no extensions)
- kp::Manager mgr;
- // 2. Create and initialise Kompute Tensors through manager
- // Default tensor constructor simplifies creation of float values
- auto tensorInA = mgr.tensor({ 2., 2., 2. });
- auto tensorInB = mgr.tensor({ 1., 2., 3. });
- // Explicit type constructor supports uint32, int32, double, float and bool
- auto tensorOutA = mgr.tensorT<uint32_t>({ 0, 0, 0 });
- auto tensorOutB = mgr.tensorT<uint32_t>({ 0, 0, 0 });
- std::vector<std::shared_ptr<kp::Tensor>> params = {tensorInA, tensorInB, tensorOutA, tensorOutB};
- // 3. Create algorithm based on shader (supports buffers & push/spec constants)
- kp::Workgroup workgroup({3, 1, 1});
- std::vector<float> specConsts({ 2 });
- std::vector<float> pushConstsA({ 2.0 });
- std::vector<float> pushConstsB({ 3.0 });
- auto algorithm = mgr.algorithm(params,
- // See documentation shader section for compileSource
- compileSource(shader),
- workgroup,
- specConsts,
- pushConstsA);
- // 4. Run operation synchronously using sequence
- mgr.sequence()
- ->record<kp::OpTensorSyncDevice>(params)
- ->record<kp::OpAlgoDispatch>(algorithm) // Binds default push consts
- ->eval(); // Evaluates the two recorded operations
- //->record<kp::OpAlgoDispatch>(algorithm, pushConstsB) // Overrides push consts
- //->eval(); // Evaluates only last recorded operation
- // 5. Sync results from the GPU asynchronously
- auto sq = mgr.sequence();
- sq->evalAsync<kp::OpTensorSyncLocal>(params);
- // ... Do other work asynchronously whilst GPU finishes
- sq->evalAwait();
- // Prints the first output which is: { 4, 8, 12 }
- for (const float& elem : tensorOutA->vector()) std::cout << elem << " ";
- std::cout << "\n";
- // Prints the second output which is: { 10, 10, 10 }
- for (const float& elem : tensorOutB->vector()) std::cout << elem << " ";
- std::cout << "\n";
- } // Manages / releases all CPU and GPU memory resources
- int main() {
- // Define a raw string shader (or use the Kompute tools to compile to SPIRV / C++ header
- // files). This shader shows some of the main components including constants, buffers, etc
- std::string shader = (R"(
- #version 450
- layout (local_size_x = 1) in;
- // The input tensors bind index is relative to index in parameter passed
- layout(set = 0, binding = 0) buffer buf_in_a { float in_a[]; };
- layout(set = 0, binding = 1) buffer buf_in_b { float in_b[]; };
- layout(set = 0, binding = 2) buffer buf_out_a { uint out_a[]; };
- layout(set = 0, binding = 3) buffer buf_out_b { uint out_b[]; };
- // Kompute supports push constants updated on dispatch
- layout(push_constant) uniform PushConstants {
- float val;
- } push_const;
- // Kompute also supports spec constants on initalization
- layout(constant_id = 0) const float const_one = 0;
-
- //[2, 2, 2]
- //[1, 2, 3]
- //[4, 8, 10]
- void main() {
- uint index = gl_GlobalInvocationID.x;
- out_a[index] += uint( in_a[index] * in_b[index] );
- out_b[index] += uint(push_const.val);
- }
- )");
- // Run the function declared above with our raw string shader
- kompute(shader);
- }
|